Home  FAQ  Search  Memberlist  Usergroups  KDR  Register  Log in  

Share | 
 

 computational models

View previous topic View next topic Go down 
AuthorMessage
mike lewis



Posts : 190
Join date : 2012-03-22

PostSubject: computational models   Mon 02 Jul 2012, 7:14 am

http://en.wikipedia.org/wiki/World3
The World3 model was a computer simulation of interactions between population, industrial growth, food production and limits in the ecosystems of the Earth. It was originally produced and used by a Club of Rome study that produced the model and the book The Limits to Growth. The principal creators of the model were Donella Meadows, Dennis Meadows, and Jørgen Randers.

The model was documented in the book Dynamics of Growth in a Finite World. It added new features to Jay W. Forrester's World2 model. Since World3 was originally created it has had minor tweaks to get to the World3/91 model used in the book Beyond the Limits, later improved to get the World3/2000 model distributed by the Institute for Policy and Social Science Research and finally the World3/2004 model used in the book Limits to growth: the 30 year update.

The model consisted of several interacting parts. Each of these dealt with a different system of the model. The main systems were

the food system, dealing with agriculture and food production,
the industrial system,
the population system,
the non-renewable resources system,
the pollution system.
http://en.wikipedia.org/wiki/World3

http://en.wikipedia.org/wiki/Computer_simulation
computer simulation, a computer model, or a computational model is a computer program, or network of computers, that attempts to simulate an abstract model of a particular system. Computer simulations have become a useful part of mathematical modeling of many natural systems in physics (computational physics), astrophysics, chemistry and biology, human systems in economics, psychology, social science, and engineering. Simulation of a system is represented as the running of the system's model. It can be used to explore and gain new insights into new technology, and to estimate the performance of systems too complex for analytical solutions.

Computer simulations vary from computer programs that run a few minutes, to network-based groups of computers running for hours, to ongoing simulations that run for days. The scale of events being simulated by computer simulations has far exceeded anything possible (or perhaps even imaginable) using traditional paper-and-pencil mathematical modeling. Over 10 years ago, a desert-battle simulation, of one force invading another, involved the modeling of 66,239 tanks, trucks and other vehicles on simulated terrain around Kuwait, using multiple supercomputers in the DoD High Performance Computer Modernization Program Other examples include a 1-billion-atom model of material deformation (2002); a 2.64-million-atom model of the complex maker of protein in all organisms, a ribosome, in 2005; and the Blue Brain project at EPFL (Switzerland), begun in May 2005, to create the first computer simulation of the entire human brain, right down to the molecular level.

Although sometimes ignored in computer simulations, it is very important to perform sensitivity analysis to ensure that the accuracy of the results are properly understood. For example, the probabilistic risk analysis of factors determining the success of an oilfield exploration program involves combining samples from a variety of statistical distributions using the Monte Carlo method. If, for instance, one of the key parameters (e.g. the net ratio of oil-bearing strata) is known to only one significant figure, then the result of the simulation might not be more precise than one significant figure, although it might (misleadingly) be presented as having four significant figures.

Model Calibration Techniques

The following three steps should be used to produce accurate simulation models: calibration, verification, and validation. Computer simulations are good at portraying and comparing theoretical scenarios but in order to accurately model actual case studies, it has to match what is actually happening today. A base model should be created and calibrated so that it matches the area being studied. The calibrated model should then be verified to ensure that the model is operating as expected based on the inputs. Once the model has been verified, the final step is to validate the model by comparing the outputs to historical data from the study area. This can be done by using statistical techniques and ensuring an adequate R-squared value. Unless these techniques are employed, the simulation model created will produce inaccurate results and not be a useful prediction tool.

Model calibration is achieved by adjusting any available parameters in order to adjust how the model operates and simulates the process. For example in traffic simulation, typical parameters include look-ahead distance, car-following sensitivity, discharge headway, and start-up lost time. These parameters influence driver behaviors such as when and how long it takes a driver to change lanes, how much distance a driver leaves between itself and the car in front of it, and how quickly it starts to accelerate through an intersection. Adjusting these parameters has a direct effect on the amount of traffic volume that can traverse through the modeled roadway network by making the drivers more or less aggressive. These are examples of calibration parameters that can be fine-tuned to match up with characteristics observed in the field at the study location. Most traffic models will have typical default values but they may need to be adjusted to better match the driver behavior at the location being studied.

Model verification is achieved by obtaining output data from the model and comparing it to what is expected from the input data. For example in traffic simulation, traffic volume can be verified to ensure that actual volume throughput in the model is reasonably close to traffic volumes input into the model. Ten percent is a typical threshold used in traffic simulation to determine if output volumes are reasonably close to input volumes. Simulation models handle model inputs in different ways so traffic that enters the network, for example, may or may not reach its desired destination. Additionally, traffic that wants to enter the network may not be able to, if any congestion exists. This is why model verification is a very important part of the modeling process.

The final step is to validate the model by comparing the results with what’s expected based on historical data from the study area. Ideally, the model should produce similar results to what has happened historically. This is typically verified by nothing more than quoting the R2 statistic from the fit. This statistic measures the fraction of variability that is accounted for by the model. A high R2 value does not necessarily mean the model fits the data well. Another tool used to validate models is graphical residual analysis. If model output values are drastically different than historical values, it probably means there’s an error in the model. This is an important step to verify before using the model as a base to produce additional models for different scenarios to ensure each one is accurate. If the outputs do not reasonably match historic values during the validation process, the model should be reviewed and updated to produce results more in line with expectations. It is an iterative process that helps to produce more realistic models.

Validating traffic simulation models requires comparing traffic estimated by the model to observed traffic on the roadway and transit systems. Initial comparisons are for trip interchanges between quadrants, sectors, or other large areas of interest. The next step is to compare traffic estimated by the models to traffic counts, including transit ridership, crossing contrived barriers in the study area. These are typically called screenlines, cutlines, and cordon lines and may be imaginary or actual physical barriers. Cordon lines surround particular areas such as the central business district or other major activity centers. Transit ridership estimates are commonly validated by comparing them to actual patronage crossing cordon lines around the central business district.

Three sources of error can cause weak correlation during calibration: input error, model error, and parameter error. In general, input error and parameter error can be adjusted easily by the user. Model error however is caused by the methodology used in the model and may not be as easy to fix. Simulation models are typically built using several different modeling theories that can produce conflicting results. Some models are more generalized while others are more detailed. If model error occurs as a result of this, in may be necessary to adjust the model methodology to make results more consistent.

In order to produce good models that can be used to produce realistic results, these are the necessary steps that need to be taken in order to ensure that simulation models are functioning properly. Simulation models can be used as a tool to verify engineering theories but are only valid, if calibrated properly. Once satisfactory estimates of the parameters for all models have been obtained, the models must be checked to assure that they adequately perform the functions for which they are intended. The validation process establishes the credibility of the model by demonstrating its ability to replicate actual traffic patterns. The importance of model validation underscores the need for careful planning, thoroughness and accuracy of the input data collection program that has this purpose. Efforts should be made to ensure collected data is consistent with expected values. For example in traffic analysis, it is typically common for a traffic engineer to perform a site visit to verify traffic counts and become familiar with traffic patterns in the area. The resulting models and forecasts will be no better than the data used for model estimation and validation.
http://en.wikipedia.org/wiki/Computer_simulation
Back to top Go down
View user profile
 
computational models
View previous topic View next topic Back to top 
Page 1 of 1
 Similar topics
-
» Wall-E by me!!!
» Tiểu thư kiêu kỳ - Cute (đang cập nhật )
» HD Models Released
» Flaviana Matata - MISS TANZANIA UNIVERSE 2007
» Making HD Designs fit Regular Models

Permissions in this forum:You cannot reply to topics in this forum
WWWS :: Main Forums :: Science & Technology-
Jump to: